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Abstract
A symmetry reduction of the lattice modified Boussinesq system is studied.
The full group of Lie point symmetries of the relevant system is retrieved
and certain group invariant solutions are considered by using an accessional
generalized symmetry. It is demonstrated that the symmetry reduction leads to
a coupled set of second-order nonlinear non-autonomous ordinary difference
equations involving six free parameters, generalizing to higher order some of
the known discrete analogues of the Painlevé VI equation. The corresponding
isomonodromic deformation problem is constructed through the symmetry
reduction as well.

PACS numbers: 02.20.Qs, 02.30.Hq, 02.30.Jr

1. Introduction

To a mathematician and a physicist of the time, the year 1905 was certainly eventful. They
may have read an article by Fuchs introducing a parameter family of nonlinear, second-order
ordinary differential equations, which are widely known nowadays as the Painlevé VI (PVI)
equation. Most likely, they may have read the seminal article by Einstein introducing his
special theory of relativity [1], setting the key ideas for an entirely new theory of spacetime
and gravitation proposed 11 years later, the general theory of relativity. The fact that the
equation proposed by Fuchs in 1905 appears systematically in the reduction of the Einstein’s
field equations of general relativity gives to this centennial a much wider significance.

Fuchs introduced PVI equation in his study on the isomonodromic deformations of a
linear, second-order ordinary differential equation of the (Lazarus) Fuchian type with four
essential singular points [2]. Contemporaneously, Garnier continued Fuchs’ original study,
generalizing his results to higher order systems of differential equations and which can be
interpreted as higher order analogues of the Painlevé VI equation [3]. The Garnier and the
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corresponding Schlesinger systems [4] were systematically studied during the 1980s by the
Tokyo school [5, 6] and have recently found a revival of interest.

Discrete Painlevé equations emerged more than a decade ago as difference analogues of
the Painlevé transcendental ordinary differential equations. It is firmly believed that discrete
Painlevé equations share many of the intriguing properties with the corresponding continuous
ones. The first examples of such equations arose from studies on semi-classical orthogonal
polynomials [7, 8], random matrix models [9, 10] and integrable lattice systems [11], as
discrete analogues of the Painlevé I and II. Subsequently, other examples were found by
employing, notably, the very successful method of singularity confinement [12, 13] and the
Bäcklund transformations of the continuous Painlevé equations [14]. Since then, the subject
developed very rapidly (see [15] for a review) culminating in the work by Sakai [16] who
introduced a second-order difference equation with coefficients depending on the discrete
variable through elliptic functions. Sakai’s equation is regarded as a master discrete Painlevé
equation since all other discrete, as well as continuous, Painlevé equations can be obtained
from it by degenerations. More recently, Sakai introduced in [17] a q-difference analogue of
the Garnier system, by setting up the corresponding q-isomonodromic deformation problem.

Along the same lines of research, a coupled set of second-order ordinary difference
equations (O�Es) was introduced in [18], which can be regarded as the discrete version
of a certain system of equations belonging to the Garnier system. The discrete system
considered in [18] was the modified lattice Korteweg–de Vries (KdV) system embedded in
a three-dimensional lattice and the relevant O�Es were obtained by employing a compatible
three-dimensional symmetry reduction.

In the present work, we investigate a lattice analogue of the (modified) Boussinesq (mBSQ)
system and the admitted symmetry group. By applying Lie group techniques to the lattice
equations, we consider certain classes of symmetric solutions of the mBSQ system. Special
cases of the relevant symmetry constraints were derived in [19]. Here we present in detail the
full-parameter case together with its explicit symmetry reduction. It is shown that the reduced
system is the following non-autonomous coupled set of second-order O�Es:

β1
n − nξn = xn(r

2yn − 1)
(
β1

n+1 − (n + 1)ξn+1
)

(rxn − 1)(ryn − xn)
+

xn

(
β2

n+1 − (n + 1)ζn+1 − 3c
)

ryn − xn

, (1a)

β2
n − nζn = β1

n+1 − (n + 1)ξn+1

1 − rxn

+
r
(
β2

n+1 − (n + 1)ζn+1
)

r − yn

. (1b)

In the above system, n ∈ Z is the independent variable and (xn, yn) are the dependent variables
with values in the complex numbers. The auxiliary quantities ξn, ζn, β

1
n, β

2
n are given by

ξn = 3

(
1 +

xn

yn

ryn−1 − xn−1

rxn−1 − 1
+ xn

r − yn−1

rxn−1 − 1

)−1

, (2a)

ζn = 3

(
1 +

1

xn

rxn−1 − 1

r − yn−1
+

1

yn

ryn−1 − xn−1

r − yn−1

)−1

, (2b)

β1
n = λ1 + λ3ω

n+c + λ4ω
2(n+c) + n + c, (2c)

β2
n = −λ2 + λ3ω

n+c+1 + λ4ω
2(n+c+1) + n + c, (2d)

respectively, where (λ1, λ2, λ3, λ4, r, c) are complex parameters and ω is a primitive cubic root
of unity. We call the system (1) discrete Garnier type, as we firmly believe that it constitutes
the discrete analogue of the system of higher order ODEs implicit in the original n = 2 Garnier



A discrete Garnier type system 12193

f

f (2) f (1,2)

f (1)

1

1

2 2

α

α α

α

Figure 1. An elementary quadrilateral.

system of ODEs generalizing the PVI equation, cf [3]. However, at this point in time, we have
not yet established a direct correspondence with the original system given by Garnier, and
hence we call it of ‘Garnier type’. These investigations follow closely the approach we have
taken in recent works [20, 21], where the so-called generating partial differential equation
(PDE) of the BSQ hierarchy was derived and shown to constitute a generalization of the
Ernst equations for an Einstein–Maxwell–Weyl field. Certain group invariant solutions of the
relevant PDEs were investigated and showed that they are built from solutions of a coupled
system of second-order nonlinear ODEs involving six free parameters, which was conjectured
to be equivalent to the lowest order Garnier system. The results presented in the following
constitute the discrete analogue of that procedure.

2. Symmetries and integrability of the discrete Boussinesq system

Whereas lattice equations associated with the KdV equation have been studied extensively
over the last decades [22], those associated with the BSQ equation are relatively unknown. In
this section, we consider the symmetry group of lattice version of the BSQ and its integrability
properties. The relevant lattice equation which was derived in [23] lives on a nine-point stencil.
For computational and illustrative reasons, instead of studying the equation on the nine-point
stencil, we consider here an equivalent form of the relevant lattice equation by recasting it as
a two-component system living on a planar graph with elementary quadrilaterals faces.

For equations of this type, one has fields f : Z
2 → C

n assigned on the vertices at sites
(n1, n2) which vary by unit steps only and complex lattice parameters α1, α2 assigned on the
edges of an elementary square (figure 1). The basic building block of such equations consists
of a system of algebraic relations of the form

Bν(f, f(1), f(2), f(1,2);α1, α2) = 0, ν = 1, . . . , n, (3)

which relate the values of f residing on the four vertices of an elementary quadrilateral.
The forward shifted value of a field will be denoted by a subscript inside parentheses with
respect to the lattice direction to which the shift operation has been performed and similarly
the backward shift is indicated by a minus sign, i.e.

f(1) := f (n1 + 1, n2), f(−2) := f (n1, n2 − 1), f(1,2) := f (n1 + 1, n2 + 1). (4)

The lattice mBSQ system is a two-component system of equations of the form (3), namely

f 1
(1,2) = f 2

α1f
1
(2) − α2f

1
(1)

α1f
2
(1) − α2f

2
(2)

, f 2
(1,2) = f 2

f 1

α1f
1
(1)f

2
(2) − α2f

1
(2)f

2
(1)

α1f
2
(1) − α2f

2
(2)

, (5)

f i : Z
2 → CP

1, i = 1, 2, given first (in a different notation) in [19].
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Let us now recall the basic notions of Lie symmetry methods applied to lattice equations
of the form (3). A detailed study of symmetry methods applied to algebraic or differential
equations can be found in [24, 25]. With minor modifications, such methods can be equally
well applied to lattice equations of the form (3).

Let G be a one-parameter group of transformations acting on U = CP
1 ×CP

1, the domain
of the dependent variables of the lattice mBSQ equation, i.e.

G : f i �→ 	i(n1, n2, f ; ε), ε ∈ C, i = 1, 2. (6)

We denote by J (k) the forward lattice jet space with coordinates
(
f i, f i

J

)
, where by f i

J we
mean the forward shifted values of f i , indexed by all unordered (symmetric) multi-indices
J = (j 1, j 2, . . . j k), 1 � j r � 2, of order k = #J . Similarly, one can define the backward
lattice jet space of order k, denoted by J (−k), or in general the k-order lattice jet space J (k,−k).
The prolongation of the group action of G on J (k) is

G(k) :
(
f i, f i

J

) �→ (	i(n1, n2, f
1; ε),	i

J (n1, n2, f
i; ε)), i = 1, 2, (7)

where 	i
(1)(n1, n2, f

i; ε) = 	i
(
n1 + 1, n2, f

i
(1); ε

)
, 	i

(1,2)(n1, n2, f
i; ε) = 	i

(
n1 + 1,

n2 + 1, f i
(1,2); ε

)
, etc.

The infinitesimal generator of the group action of G on U is given by the vector field

v =
2∑

i=1

Qi(n1, n2, f
j )∂f i , where Qi(n1, n2, f

j ) = d

dε
	i(n1, n2, f

j ; ε)

∣∣∣∣
ε=0

,

(8)

i, j = 1, 2. There is a one-to-one correspondence between connected groups of
transformations and their associated infinitesimal generators since the group action is
reconstructed by the flow of the vector field v by exponentiation

	i(n1, n2, f ; ε) = exp(εv)f i, i = 1, 2. (9)

The infinitesimal generator of the action of G(k) on J (k) is the associated nth-order forward
prolonged vector field

v(k) =
2∑

i=1

k∑
#J=j=0

Qi
J (n1, n2, f

�)∂f i
J
. (10)

By similar considerations, one may define the kth-order backward prolonged vector field v(−k),
and in general the vector field v(k,−k).

The transformation G is a Lie point symmetry of the lattice equations (3), if it transforms
any solution of (3) to another solution of the same equations. Equivalently, G is a symmetry
of equations (3), if the equation is not affected by the transformation (7). The infinitesimal
criterion for a connected group of transformations G to be a symmetry of equation (3) is

v(2)(Bν(f, f(1), f(2), f(1,2);α1, α2)) = 0. (11)

Equation (11) should hold for all solutions of equations (3), and thus the latter equations
and their consequences should be taken into account. Equation (11) determines the most
general infinitesimal Lie point symmetry of the system (3). The resulting set of infinitesimal
generators forms a Lie algebra g from which the corresponding Lie point symmetry group G
can be found by exponentiating the given vector fields.

A (forward) lattice invariant for G is a function I : J (k) → C which satisfies
I
(
g(k) · (

f i, f i
J

)) = I
(
f i, f i

j

)
for all g ∈ G and all

(
f i, f i

j

) ∈ J (k). For connected groups
of transformations, a necessary and sufficient condition for a function I : J (k) → C to be
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invariant under the action of G is the annihilation of I by all prolonged infinitesimal generators,
i.e.

v(k)(I ) = 0, (12)

for all v ∈ g.
We now apply the preceding general framework to the lattice mBSQ system (5). Using

the infinitesimal invariance condition (11), we find that the most general group of Lie point
symmetry transformations is the following:

g1 : (f 1, f 2) �−→ (eε1f 1, f 2), (13a)

g2 : (f 1, f 2) �−→ (f 1, eε2f 2), (13b)

g3 : (f 1, f 2) �−→ (
eε3ω

n1+n2
f 1, e−ε3ω

n1+n2+1
f 2), (13c)

g4 : (f 1, f 2) �−→ (
eε4ω

2(n1+n2)

f 1, e−ε4ω
2(n1+n2+1)

f 2), (13d)

where εi ∈ C and ω is a primitive cubic root of unity. The associated infinitesimal generator
of the action of the above symmetry group is given by the following vector field:

v = (λ1 + λ3ω
n1+n2 + λ4ω

2(n1+n2))f 1∂f 1 + (λ2 − λ3ω
n1+n2+1 − λ4ω

2(n1+n2+1))f 2∂f 2 . (14)

By relaxing the geometrical assumption in which the symmetry characteristics Qi depend
on ni and f i and allowing Qi to be functions defined on Z

2 × J (k,−k) for some finite but
unspecified k ∈ N, k � 1, we arrive naturally at the notion of the generalized Lie symmetries.
Symmetry generators of this type cannot be associated with transformation groups acting
geometrically on the domain of the dependent variables. Lowest order (k = 1) generalized
symmetries of the lattice mBSQ system are given by the following three vector fields:

wi = (ξ i − 1)f 1∂f 1 − (ζ i − 1)f 2∂f 2 , (15a)

z = (n1(ξ
1 − 1) + n2(ξ

2 − 1))f 1∂f 1 − (n1(ζ
1 − 1) + n2(ζ

2 − 1))f 2∂f 2 , (15b)

where

ξ i = 3f 1
(i)f

2

f 1
(i)f

2 + f 1
(−i)f

2
(i) + f 1f 2

(−i)

, ζ i = 3f 1f 2
(−i)

f 1
(i)f

2 + f 1
(−i)f

2
(i) + f 1f 2

(−i)

, (16)

i = 1, 2. By exploiting the fact that the commutator of two symmetry generators is again
a symmetry generator, one finds from the commutator relations [z, wi] two new symmetry
generators with symmetry characteristics defined on Z

2 × J (2,−2). In principle, an infinite
number of symmetries can be constructed using the commutator relations of the resulting new
symmetry generators.

The existence of an infinite number of symmetries is closely related to the integrability
properties of the system under consideration. As the definition of the integrability for
quadrilateral discrete equations (3), we place the three-dimensional consistency property.
It expresses the fact that equations (3) can be embedded consistently in Z

3. More precisely,
by the consistency property we mean that the overdetermined system of the equations

Bν(f, f(i), f(j), f(i,j); ai, aj ) = 0, 1 � i < j � 3, ν = 1, 2, (17)

and their shifted versions possesses a non-empty set of solutions. This property can be
verified by considering an elementary initial value problem on the three-dimensional cube
with initial data assigned on four vertices, not all of them lying on the same face. One such
initial configuration is depicted in figure 2 with initial values (f, f(i)). In order to prove the
three-dimensional consistency, it is sufficient to show that the values at the rest of the vertices
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Figure 2. An elementary initial value problem on the cube.

are uniquely determined using the equations on all six faces of the cube. This is achieved
as follows: using equations (17) on the three faces adjacent to the vertex with value f , we
determine uniquely the values f(i,j) in terms of the initial data. Consecutively, using the
equation on each of the remaining three faces, we evaluate f(1,2,3) in three different ways.
Consistency means that all these three values are equal in terms of the initial data. After a
lengthy but straightforward calculation, we find that the values f(1,2,3) for the discrete mBSQ
system are

f 1
(1,2,3) = f 1

σ
ijk

aiajf
1
(k)

(
aif

2
(i) − ajf

2
(j)

)
σ
ij
aiaj

(
aif

1
(i)f

2
(j) − ajf

1
(j)f

2
(i)

) ,

f 2
(1,2,3) = f 2

σ
ijk

aiajf
2
(k)

(
aif

1
(j) − ajf

1
(i)

)
σ
ij
aiaj

(
aif

1
(i)f

2
(j) − ajf

1
(j)f

2
(i)

) ,

(18)

where σ
ijk

denotes the cyclic sum over the subscripts (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1),

and similarly the cyclic sum σ
ij

is over (i, j) = (1, 2), (2, 3), (3, 1). The consistency property

follows from the fact that the values f(1,2,3) remain invariant under any permutation of the
indices (1, 2, 3).

An immediate consequence of the consistency property is that the mBSQ system can be
associated with an auxiliary linear overdetermined system of equations (Lax pair), following a
similar approach to the one elaborated in [26, 27]. That linear system, in the mBSQ case, can
be constructed by using equations (17) only. Indeed, let us first identify the auxiliary variables
f3 ∈ CP

1 × CP
1, with the ratio of homogeneous variables ψi, i = 0, 1, 2, as follows:

f 1
(3) = ψ1

ψ0
, f 2

(3) = ψ2

ψ0
. (19)

Next we insert equations (19) into (17) and set

ψ0
(i) = αi

f 2
(i)

f 2
ψ0 − λ

1

f 2
ψ2, (20)

where i = 1, 2 and λ = α3. Finally, with these identifications, equations (17) can be written
in the following matrix form:

ψ(1) = L1ψ, ψ(2) = L2ψ, (21)
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where ψ = (ψ0, ψ1, ψ2)t and the components of the matrices L1 and L2 are given by

(Li) =




αi
f 2

(i)

f 2 0 −λ 1
f 2

−λf 1
(i) αi 0

0 −λ
f 2

(i)

f 1 αi
f 1

(i)

f 1


 . (22)

It is now straightforward to show that the compatibility condition L1
(2)L

2 = L2
(1)L

1 of the
linear system (21) holds for every value of λ, if and only if equations (5) are satisfied.

3. Symmetry reduction to higher discrete Painlevé equations

In this section, we perform a general symmetry reduction of the lattice mBSQ system to
a second-order non-autonomous system of difference equations involving two dependent
variables and six free parameters. To be more precise, we search for solutions f i =
f i(n1, n2;α1, α2) of the lattice mBSQ system which remain invariant along the orbits of
the symmetry generator

r = z − v. (23)

Since, by definition, the transformation groups generated by the vector fields z, v act on the
domain of the dependent variables f i only, invariant solutions under r satisfy in addition to
equations (5) the following infinitesimal invariance conditions:

r(f 1) = r(f 2) = 0. (24)

Explicitly, the symmetry constraints (24) take the form

n1ξ
1 + n2ξ

2 = β1, n1ζ
1 + n2ζ

2 = β2, (25)

where

β1 = λ1 + λ3ω
n1+n2 + λ4ω

2(n1+n2) + n1 + n2, (26a)

β2 = −λ2 + λ3ω
n1+n2+1 + λ4ω

2(n1+n2+1) + n1 + n2. (26b)

This form of the symmetry constraint for the mBSQ system was first proposed in [19] is a
more restricted parameter case, which was subsequently used in [28] in a geometric context.
The method for obtaining invariant solutions of two-dimensional lattice equations is similar
to the direct substitution method for obtaining invariant solutions of PDEs in two independent
variables. The aim is to reduce the system of partial difference equations (5), accompanied
by the symmetry constraints (25), to a system of ordinary difference equations with respect to
one direction of the lattice. Since the discrete mBSQ system is symmetric by interchanging
mutually the lattice variables and the corresponding lattice parameters, we choose to eliminate
the shifts in the lattice variable n2. The next step is to determine which will be the new
dependent variables of the reduced system. An answer to this problem is provided by the
construction of a complete set of joint lattice invariants of the symmetry subgroup {g1, g2}.
These are functions on J (2), which remain invariant under the second-order prolongation of
the group action of the scaling transformations (13a), (13b). A complete set of functionally
independent invariants of this kind is given by the following six functions:

wi = f i
(2)

f i
(1)

, hi = f i
(1)

f i
, gi = f i

(1,2)

f i
(1)

, (27)

i = 1, 2. The crucial observation is that both the lattice equations and the symmetry constraints
can be written in terms of the above invariants and their shifts. Indeed, the lattice mBSQ system
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can be written in the form

h2g1 = rw1 − 1

r − w2
, h2g2 = h1 rw2 − w1

r − w2
, where r = α1

α2
. (28)

The functions ξ 1, ζ 1, can be written in terms of the invariants wi and their backward shifts in
the direction of the lattice variable n1 only as follows:

ξ 1 = 3

1 + w1

w2

(
rw2−w1

rw1−1

)
(−1)

+ w1
(

r−w2

rw1−1

)
(−1)

, (29a)

ζ 1 = 3

1 + 1
w1

(
rw1−1
r−w2

)
(−1)

+ 1
w2

(
rw2−w1

r−w2

)
(−1)

. (29b)

Similarly, the functions ξ 2, ζ 2 take the form

ξ 2 = 3g1
(−1)

g1
(−1) +

g2
(−1)

g1
(−1,−2)

+ 1
g2

(−1,−2)

, ζ 2 = 3

g2
(−1,−2)

(
g1

(−1) +
g2

(−1)

g1
(−1,−2)

+ 1
g2

(−1,−2)

) . (30)

After a lengthy elimination procedure applied to equations (30) and their shifted versions in
the direction n1, using equations (28) and the following identities

gi
(−1) = hiwi, gi

(−2) = hiwi
(2), (31)

i = 1, 2, we end up with a system of equations of the form

ξ 2 = w1(r2w2 − 1)ξ 2
(1)

(rw1 − 1)(rw2 − w1)
+

w1
(
ζ 2
(1) − 3

)
rw2 − w1

, (32a)

ζ 2 = ξ 2
(1)

1 − rw1
+

rζ 2
(1)

r − w2
. (32b)

Using the symmetry constraints (25) and their shifted versions in the direction n1, and
equations (32), we finally arrive at the reduced system of equations which reads

β1 − n1ξ
1 = w1(r2w2 − 1)

(
β1

(1) − (n1 + 1)ξ 1
(1)

)
(rw1 − 1)(rw2 − w1)

+
w1

(
β2

(1) − (n1 + 1)ζ 1
(1) − 3n2

)
rw2 − w1

, (33a)

β2 − n1ζ
1 = β1

(1) − (n1 + 1)ξ 1
(1)

1 − rw1
+

r
(
β2

(1) − (n1 + 1)ζ 1
(1)

)
r − w2

, (33b)

where ξ 1, ζ 1 and β1, β2 are given by equations (29) and (26), respectively. With respect to
the lattice variable n1, equations (33) are exactly the O�Es quoted in the introduction where
they are written in a more customary form.

4. A linear deformation problem

In this section, we consider consistent specifications of the dependence of the main variables
f i and the auxiliary variables ψi on the continuous lattice parameters αi and the spectral
parameter λ. These results ultimately rest on the existence of a compatible system of
differential-difference equations and partial differential equations which admit a common set
of solutions with the original lattice equations under consideration. Consequently, solutions
of the reduced system of the difference equations (33) are compatible with special classes of
symmetric solutions of the continuous systems.
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First, we perform the following gauge transformation on the auxiliary variables ψ of the
linear system (21):

ψ = Gϕ, (34)

where the components of the matrix G are given by

(G) =

1 0 0

0 f 1 0
0 0 f 2


 . (35)

In this gauge, the Lax pair (21) takes the form

ϕ(1) = G−1
(1)L

1Gϕ = M1ϕ, ϕ(2) = G−1
(2)L

2Gϕ = M2ϕ, (36)

where the components of the matrices Mi are expressed in terms of the invariants (27).
Explicitly, the transformed Lax matrices M1 and M2 become

(Mi) =




αi
f 2

(i)

f 2 0 −λ

−λ αi
f 1

f 1
(i)

0

0 −λ αi
f 1

(i)

f 1
f 2

f 2
(i)


 . (37)

The isomonodromic deformation problem for the discrete Garnier type system is based on the
following differential-difference system:

f 1
,αi

= −ni

αi

(ξ i − 1)f 1, f 2
,αi

= ni

αi

(ζ i − 1)f 2, (38)

where partial differentiation will be denoted by a comma, or by ∂ , followed by the variable(s)
with respect to which the differentiation has been performed. The system (38) is compatible
with the lattice BSQ system, in the sense that the two systems of equations have a non-empty
common set of solutions.

In a similar manner as in the lattice BSQ system, equations (38) form their own Lax
pair. This Lax pair can be obtained in explicit form by first shifting equations (38) in the third
auxiliary direction and using the lattice equations (5) (with one of the lattice directions replaced
by the third auxiliary direction) in order to eliminate unwanted double-shifted variables. Thus,
we obtain a set of Riccati type equations which can be linearized using the same splitting as
in (19), which after employing the same gauge transformation (34) leads to a differential Lax
pair. Omitting the details of the derivation here, we present the final result, which consists of
the following linear differential relations with respect to the lattice parameters αi :

ϕ,α1 = A1ϕ, ϕ,α2 = A2ϕ, (39)

where the components of the matrices Ai read

(Ai) = niϑi

α3
i − λ3




α2
i

f 2
(−i)

f 2 λ2 λαi
f 1

(−i)

f 1

λαi
f 1

(i)

f 1

f 2
(−i)

f 2 α2
i

f 1
(i)

f 1 λ2 f 1
(i)

f 1

f 1
(−i)

f 1

λ2 f 2
(i)

f 2

f 2
(−i)

f 2 λαi
f 2

(i)

f 2 α2
i

f 1
(−i)

f 1

f 2
(i)

f 2


 (40)

and the terms ϑi are uniquely determined by the relations

tr A1 = 3n1α
2
1

α3
1 − λ3

, tr A2 = 3n2α
2
2

α3
2 − λ3

. (41)
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It is now straightforward to show that the equations

M1
,α1

+ M1A1 − A1
(1)M

1 = 0, M2
,α2

+ M2A2 − A2
(2)M

2 = 0, (42)

resulting from the compatibility conditions
(
ϕ(1)

)
α1

= (ϕα1)(1) and (ϕ(2))α2 = (ϕα2)(2) on
the linear systems (36), (39), respectively, are satisfied provided equations (38) and their
consequences hold.

Let us now restrict our considerations on the dependence of the main and auxiliary
variables on the continuous lattice parameters α1, α2. The compatibility condition ϕ,α1α2 =
ϕ,α2α1 on the overdetermined system (39) leads to a system of nonlinear PDEs for the variables
f i and their forward and backward shifts in both directions of the lattice. The resulting system
of PDEs and the full algebra of Lie point and generalized symmetries, in connection with
the hierarchy of the modified BSQ PDE, are not pertinent in the present discussion. Here,
we concentrate on the compatible continuum version of the specific infinitesimal invariance
condition (24) on the lattice.

In this direction, a crucial observation is that, in view of the compatible system (38), the
symmetry generator z given by (15b) translates to

z = −(
α1f

1
,α1

+ α2f
1
,α2

)
∂f 1 − (

α1f
2
,α1

+ α2f
2
,α2

)
∂f 1 . (43)

On the continuum level, the above vector field z corresponds to the evolutionary vector field
of the scaling transformations on f , generated by the vector field

α1∂α1 + α2∂α2 . (44)

This observation leads us to conclude that the symmetry generator z represents the scaling
invariance of the compatible system of PDEs. Therefore, in order to construct the compatible
linear deformation problem in terms of the continuous lattice parameters, it suffices to lift the
symmetry generators v and (44) on the auxiliary space with coordinates (λ, ϕi) in such a way
so as to become symmetry generators of the linear systems (36), (39). Clearly, in the gauge
we are working, the symmetry transformations (13a), (13b) preserve the form of the linear
systems (36) and (39). The remaining symmetry transformations, namely (13c), (13d) and
the scaling transformation generated by (44), do not affect the linear systems (36) and (39) by
prolonging their group action on the auxiliary space as follows:

(λ, αi, f
j , ϕk) �→ (eε0λ, eε0αi, f

j , eε0(n1+n2)ϕk), (45a)

(λ, αi, f
1, f 2, ϕ0, ϕ1, ϕ2) �→ (λ, αi, eε3δf 1, e−ε3δ(1)f 2, e−ε3δ(1)ϕ0, e−ε3δϕ1, e−ε3δ(1,1)ϕ2),

(45b)

(λ, αi, f
1, f 2, ϕ0, ϕ1, ϕ2) �→ (

λ, αi, eε4δ
2
f 1, e−ε4δ

2
(1)f 2, e−ε4δ

2
(1)ϕ0, e−ε4δ

2
ϕ1, e−ε4δ

2
(1,1)ϕ2

)
,

(45c)

where δ = ωn1+n2 . From the above group actions, we find that the lifted vector field r̂ is given
by

r̂ = α1∂α1 + α2∂α2 + λ∂λ + (γ(1) − 1)∂ϕ0 + γ ∂ϕ1 + (γ(1,1) − 2)∂ϕ2 − v, (46)

where γ = λ3ω
n1+n2 +λ4ω

2(n1+n2) +n1 +n2. Finally, the associated invariant surface conditions

r̂(ϕi − ϕi(λ, a1, a2)) = 0 (47)

deliver the linear deformation problem

λϕ,λ + α1ϕ,α1 + α2ϕ,α2 = �ϕ, (48)
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where the matrix � is given as follows:

(�) =

γ(1) − 1 0 0

0 γ 0
0 0 γ(1,1) − 2


 . (49)

5. Discussion

Following earlier work [11, 18, 19], we presented a symmetry reduction for the lattice mBSQ
system, leading to a coupled set of second-order non-autonomous nonlinear ordinary difference
equations. In the continuous case [20, 21], the generating PDE associated with the lattice BSQ
system was obtained, which encodes the entire hierarchy of the continuous BSQ system. The
corresponding symmetry reduction led to a coupled set of second-order ODEs with six free
parameters, generalizing the Painlevé VI equation. The considerations in the present work
can be seen as a discrete counterpart of that earlier work.

Whereas the connection between integrable nonlinear evolution equations and Painlevé
equations, through similarity reduction, is well known, the connection as established in
[18, 21] and in the present work shows that these routes also remain true for higher order
systems of the Garnier type, both discrete as well as continuous. The construction employed
in [18] is different from the one that we considered here. In the former case, starting from
KdV type of lattice systems one obtains a 2 × 2 matrix isomonodromic deformation system,
whereas in the present case starting from the mBSQ type system we obtain a 3 × 3 matrix
Schlesinger type system. It would be of interest to compare these systems and investigate issues
of universality between these different Garnier type systems. In fact, a similar programme
is underway for the continuous case, cf [26, 27], and it is of interest to see whether on the
discrete level these questions become even more pertinent. In particular, issues regarding the
irreducibility and transcendentality of the corresponding general integrals would be of great
interest. Finally, it would be interesting to see whether the resulting equations fit in with
Sakai’s q-analogue of the Garnier system [17].
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